Skip to main content
Article thumbnail
Location of Repository

Multiple Reductive-Dehalogenase-Homologous Genes Are Simultaneously Transcribed during Dechlorination by Dehalococcoides-Containing Cultures

By Alison S. Waller, Rosa Krajmalnik-Brown, Frank E. Löffler and Elizabeth A. Edwards


Degenerate primers were used to amplify 14 distinct reductive-dehalogenase-homologous (RDH) genes from the Dehalococcoides-containing mixed culture KB1. Most of the corresponding predicted proteins were highly similar (97 to >99% amino acid identity) to previously reported Dehalococcoides reductive dehalogenases. To examine the differential transcription of these RDH genes, KB1 was split into five subcultures amended with either trichloroethene, cis-1,2-dichloroethene, vinyl chloride, 1,2-dichlorethane, or no chlorinated electron acceptor. Total RNA was extracted following the onset of reductive dechlorination, and RDH transcripts were reverse transcribed and amplified using degenerate primers. The results indicate that the transcription of RDH genes requires the presence of a chlorinated electron acceptor, and for all treatments, multiple RDH genes were simultaneously transcribed, with transcripts of two of the genes being present under all four electron-accepting conditions. Two of the transcribed sequences were highly similar to reported vinyl chloride reductase genes, namely, vcrA from Dehalococcoides sp. strain VS and bvcA from Dehalococcoides sp. strain BAV1. These findings suggest that multiple RDH genes are induced by a single chlorinated substrate and that multiple reductive dehalogenases contribute to chloroethene degradation in KB1

Topics: Biodegradation
Publisher: American Society for Microbiology
OAI identifier:
Provided by: PubMed Central
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://www.pubmedcentral.nih.g... (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.