Volatility of unevenly sampled fractional Brownian motion: An application to ice core records

Abstract

The analysis of many natural time series and especially those related to ice core records often suffers from uneven sampling intervals. For fractional Brownian motion, we show that standard estimates of the volatility can be strongly biased due to uneven sampling. Taking these limitations into account, we study high-resolution records of temperature proxies obtained from Antarctic ice cores. We find that the volatility properties reveal a strong nonlinear component in the temperature time series for time scales of 5–200 kyr extending earlier results. These findings suggest in particular that temperature increments over these time scales appear in clusters of big and small increments—a big (positive or negative) change is most likely followed by a big (positive or negative) change and a small change is most likely followed by a small change

Similar works

Full text

thumbnail-image

NERC Open Research Archive

redirect
Last time updated on 09/03/2012

This paper was published in NERC Open Research Archive.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.