A slowly expanding disk and fast bipolar outflow from the S star π1 gruis

Abstract

We study the molecular outflow of the nearby evolved S star π1 Gru. We imaged the outflow in CO J = 2-1 and dust continuum with the Submillimeter Array. The CO emission was detected over a very broad velocity width of ∼90 km s-1. Our high-resolution images show that the outflow at low velocities (≤15 km s-1) is elongated east-west and at high velocities (≥25 km s-1) is displaced north (at redshifted velocities) and south (blueshifted velocities) of center as defined by the dust continuum source. We model the spatial-kinematic structure of the low-velocity outflow as a flared disk with a central cavity of radius 200 AU and an expansion velocity of 11 km s-1, inclined by 55° to our line of sight. We attribute the high-velocity component to a bipolar outflow that emerges perpendicular to this disk with a velocity of up to ∼45 km s-1. This high-velocity outflow may play an important role in shaping the gas envelope previously ejected by the AGB star and thus produce a bipolar morphology when the object evolves into a proto-planetary nebula. © 2006. The American Astronomical Society. All rights reserved.published_or_final_versio

Similar works

This paper was published in HKU Scholars Hub.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.