Dynamic finite element modeling for the conventional spinning process

Abstract

The process of spin forming is frequently used for manufacturing the axial symmetric products. The spinning process is a transient dynamic contact problem, and is difficult to solve by the quasi-static theory. It is also found that the literature contains few studies of spinning simulation modeling. The present study deals with the dynamic FEM code, LS-DYNA, to simulate the conventional spinning processes based on the updated Lagrangian formulation. The applications of the mass scaling technique and contact algorithm between the roller and sheet are modeled. The modeling also considers the elasto-plastic material and Coulomb friction conditions. With the differences being variations in the rotation speed of the mandrel, the feed rate of the roller, and the material density. The predicted load-deformation relationships, the strain energy distributions, the full history of deformation states, and the influence and usage of the mass scaling factor are assessed. Some defects in the simulations are observed, and proper solution models are suggested. Besides, some results of the dieless spinning process using a cylindrical mandrel are compared with the conventional spinning process. The proposed models and techniques are helpful for the analysis of the spinning process, and will be a good approach for industrial metal forming simulation.link_to_subscribed_fulltex

Similar works

Full text

thumbnail-image

HKU Scholars Hub

redirect
Last time updated on 01/06/2016

This paper was published in HKU Scholars Hub.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.