Recent nanoindentation experiments on bulk samples as well as compression tests on micro-pillars indicate that the micron-sized material volumes exhibit a first yield point that strongly depends on the sample size. In this work, molecular dynamics (MD) simulations are carried out to investigate the onset of yielding in Ni 3 Al nano-sized pillars. The MD results show that dislocation generation is from the free surfaces of the micro-pillars, when thermal vibration induces too large a local interatomic displacement. The statistical distributions of the near-surface thermal atomic displacements gathered from the MD simulations are used in conjunction with a survival probability model to predict the yield conditions of real-sized micro-pillars in real time scales. The predicted results agree fairly well with experimental results in the literature.link_to_subscribed_fulltex
Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.