Molecular dynamics study on compressive yield strength in Ni3Al micro-pillars

Abstract

Recent nanoindentation experiments on bulk samples as well as compression tests on micro-pillars indicate that the micron-sized material volumes exhibit a first yield point that strongly depends on the sample size. In this work, molecular dynamics (MD) simulations are carried out to investigate the onset of yielding in Ni 3 Al nano-sized pillars. The MD results show that dislocation generation is from the free surfaces of the micro-pillars, when thermal vibration induces too large a local interatomic displacement. The statistical distributions of the near-surface thermal atomic displacements gathered from the MD simulations are used in conjunction with a survival probability model to predict the yield conditions of real-sized micro-pillars in real time scales. The predicted results agree fairly well with experimental results in the literature.link_to_subscribed_fulltex

Similar works

Full text

thumbnail-image

HKU Scholars Hub

redirect
Last time updated on 01/06/2016

This paper was published in HKU Scholars Hub.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.