On Single-Index Coefficient Regression Models

Abstract

In this article we investigate a class of single-index coefficient regression models under dependence. This includes many existing models, such as the smooth transition threshold autoregressive (STAR) model of Chan and Tong, the functional-coefficient autoregressive (FAR) model of Chen and Tsay, and the single-index model of Ichimura. Compared to the varying-coefficient model of Hastie and Tibshirani, our model can avoid the curse of dimensionality in multivariate nonparametric estimations. Another advantage of this model is that a threshold variable is chosen automatically. An estimation method is proposed, and the corresponding estimators are shown to be consistent and asymptotically normal. Some simulations and applications are also reported.link_to_subscribed_fulltex

Similar works

Full text

thumbnail-image

HKU Scholars Hub

redirect
Last time updated on 01/06/2016

This paper was published in HKU Scholars Hub.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.