Comparative analysis of 22 coronavirus HKU1 genomes reveals a novel genotype and evidence of natural recombination in coronavirus HKU1

Abstract

We sequenced and compared the complete genomes of 22 strains of coronavirus HKU1 (CoV HKU1) obtained from nasopharyngeal aspirates of patients with respiratory tract infections over a 2-year period. Phylogenetic analysis of 24 putative proteins and polypeptides showed that the 22 CoV HKU1 strains fell into three clusters (genotype A, 13 strains; genotype B, 3 strains and genotype C, 6 strains). However, different phylogenetic relationships among the three clusters were observed in different regions of their genomes. From nsp4 to nsp6, the genotype A strains were clustered with the genotype B strains. For nsp7 and nsp8 and from nsp10 to nsp16, the genotype A strains were clustered with the genotype C strains. From hemagglutinin esterase (HE) to nucleocapsid (N), the genotype B strains were clustered closely with the genotype C strains. Bootscan analysis showed possible recombination between genotypes B and C from nucleotide positions 11500 to 13000, corresponding to the nsp6-nsp7 junction, giving rise to genotype A, and between genotypes A and B from nucleotide positions 21500 to 22500, corresponding to the nsp16-HE junction, giving rise to genotype C. Multiple alignments further narrowed the sites of crossover to a 143-bp region between nucleotide positions 11750 and 11892 and a 29-bp region between nucleotide positions 21502 and 21530. Genome analysis also revealed various numbers of tandem copies of a perfect 30-base acidic tandem repeat (ATR) which encodes NDDEDVVTGD and various numbers and sequences of imperfect repeats in the N terminus of nsp3 inside the acidic domain upstream of papain-like protease 1 among the 22 genomes. All 10 CoV HKU1 strains with incomplete imperfect repeats (1.4 and 4.4) belonged to genotype A. The present study represents the first evidence for natural recombination in coronavirus associated with human infection. Analysis of a single gene is not sufficient for the genotyping of CoV HKU1 strains but requires amplification and sequencing of at least two gene loci, one from nsp10 to nsp16 (e.g., pol or helicase) and another from HE to N (e.g., spike or N). Further studies will delineate whether the ATR is useful for the molecular typing of CoV HKU1. Copyright © 2006, American Society for Microbiology. All Rights Reserved.postprin

Similar works

This paper was published in HKU Scholars Hub.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.