Heme oxygenase-1 modulates the expression of adhesion molecules associated with endothelial cell activation

Abstract

Heme oxygenase-1 (HO-1) cleaves the porphyrin ring of heme into carbon monoxide, Fe2+, and biliverdin, which is then converted into bilirubin. Heme-derived Fe2+ induces the expression of the iron-sequestering protein ferritin and activates the ATPase Fe2+-secreting pump, which decrease intracellular free Fe2+ content. Based on the antioxidant effect of bilirubin and that of decreased free cellular Fe2+, we questioned whether HO-1 would modulate the expression of proinflammatory genes associated with endothelial cell (EC) activation. We tested this hypothesis specifically for the genes E-selectin (CD62), ICAM-1 (CD54), and VCAM-1 (CD106). We found that HO-1 overexpression in EC inhibited TNF-alpha-mediated E-selectin and VCAM-1, but not ICAM-1 expression, as tested at the RNA and protein level. Heme-driven HO-1 expression had similar effects to those of overexpressed HO-1. In addition, HO-1 inhibited the activation of NF-kappaB, a transcription factor required for TNF-alpha-mediated up-regulation of these genes in EC. Bilirubin and/or Fe2+ chelation mimicked the effects of HO-1, whereas biliverdin or carbon monoxide did not. In conclusion, HO-1 inhibits the expression of proinflammatory genes associated with EC activation via a mechanism that is associated with the inhibition of NF-kappaB activation. This effect of HO-1 is mediated by bilirubin and/or by a decrease of free intracellular Fe2+ but probably not by biliverdin or carbon monoxide.published_or_final_versio

Similar works

Full text

thumbnail-image

HKU Scholars Hub

redirect
Last time updated on 01/06/2016

This paper was published in HKU Scholars Hub.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.