The Ultrasonic/Shear-Force Microscope: Integrating Ultrasonic Sensing into a Near-Field Scanning Optical Microscope

Abstract

An ultrasonic transducer is incorporated into a near-field scanning optical microscope (NSOM) to augment its versatility to characterize the properties of layers adsorbed to a sample\u27s surface. Working under typical NSOM operation conditions, the ultrasonic transducer--attached underneath the sample--demonstrates sufficient sensitivity to monitor the waves generated by the tapered NSOM probe that oscillates in the proximity of, and parallel to, the sample\u27s top surface. This capability makes the newly integrated ultrasonic/shear-force microscope a valuable diagnostic tool in the study of sliding friction and surface phenomena in general. Here, it is used to concurrently and independently monitor the effects that probe-sample interactions exert on the probe (that is attached to a piezoelectric tuning fork) and on the sample (that is attached to the ultrasonic transducer). The signal from the tuning fork (TF) constitutes the so called shear-force signal, widely used in NSOM as a feedback to control the probe\u27s vertical position but whose working mechanism is not yet well understood. Tests involving repeated vertical z motion of the probe towards and away from the sample\u27s surface reveal that the TF and ultrasonic (US) signals have distinct z dependence. Additionally, where the TF signal showed abrupt changes during the approach, the US changed accordingly. A shift in the probe\u27s resonance frequency that depends on the probe-sample distance is also observed through both the TF and the US responses. Within the sensitivity of the apparatus, ultrasonic signals were detected only at probe-sample distances where the probe\u27s resonance frequency had shifted significantly. These measured signals are consistent with a probe entering and leaving a viscoelastic fluid-like film above the sample. The film acts as the medium where waves are generated and coupled to the ultrasonic sensor located beneath the sample. To our knowledge, this is the first reported use of ultrasonic detection for detailed monitoring of the distance dependence of probe-sample interactions, and provides direct evidence of sound as an energy dissipation channel in wear-free friction. This newly integrated ultrasonic/shear-force microscope, which can be implemented with any functionalized proximal probe (including aperture and apertureless NSOM), can become a valuable metrology tool in surface science and technology

Similar works

This paper was published in PDXScholar (Portland State University).

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.