Article thumbnail
Location of Repository

Properties of a cell volume-sensitive potassium conductance in isolated guinea-pig and rat hepatocytes.

By C A Sandford, J H Sweiry and D H Jenkinson

Abstract

1. Whole-cell voltage clamp and intracellular recording techniques were used to study the increase in K+ conductance that accompanies swelling in isolated guinea-pig and rat hepatocytes in short-term culture at 37 degrees C. 2. Swelling was induced (i) by the application of pressure (15 cmH2O) to the shank of the patch pipette, (ii) by exposing the cells to hypotonic solutions and (iii) as a consequence of leakage of electrolyte from an intracellular microelectrode. 3. Applying pressure to the patch pipette caused a large outward current (approximately 600 pA) to develop in guinea-pig hepatocytes voltage clamped to 0 mV. This current reversed direction at -86 mV, close to the reversal potential for K+, EK (-93 mV), and is attributable to the activation of a K+ conductance. 4. Spectral analysis of current noise during this response suggested a single-channel conductance of 7 pS, though this may well be an underestimate. The power spectrum could be fitted by the sum of two Lorentzian components, with half-power frequencies of 7 and 152 Hz. Seventy per cent of the variance was associated with the lower frequency component. 5. The steady-state current-voltage relationship for guinea-pig hepatocytes, as determined by whole-cell recording, was linear over the range -70 to +40 mV both before and during the increase in K+ conductance induced by swelling. 6. Confirming earlier work, intracellular recording using microelectrodes filled with 1 M-potassium citrate sometimes resulted in a slow hyperpolarization and a large rise in input conductance. These changes are also attributable to an increase in K+ conductance as the cell swelled because of leakage from the electrode. 7. Application of hypotonic external solutions during intracellular recording caused hyperpolarization and an increase in conductance. Conversely, hypertonic solution evoked depolarization and a fall in conductance in partly swollen cells. 8. The volume-activated K+ conductance was reversibly blocked by cetiedil, which caused half-maximal inhibition at 2.3 microM. Bepridil, quinine and barium were also effective, with IC50s (concentrations giving 50% maximal inhibition) of 2.7, 12 and 67 microM respectively. 9. Much greater concentrations of cetiedil and bepridil (IC50 approximately 1 mM and 77 microM respectively) were required to inhibit the loss of K+ which follows the application of angiotensin II (100 nM) to guinea-pig hepatocytes, and which occurs via Ca(2+)-activated K+ channels. Our evidence suggests that the activation of K+ channels by cell swelling is Ca2+ independent.(ABSTRACT TRUNCATED AT 400 WORDS

Topics: Research Article
Year: 1992
DOI identifier: 10.1113/jphysiol.1992.sp018995
OAI identifier: oai:pubmedcentral.nih.gov:1176029
Provided by: PubMed Central
Sorry, our data provider has not provided any external links therefore we are unable to provide a link to the full text.

Suggested articles


To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.