Ladder operators and endomorphisms in combinatorial Physics

Abstract

Starting with the Heisenberg-Weyl algebra, fundamental to quantum physics, we first show how the ordering of the non-commuting operators intrinsic to that algebra gives rise to generalizations of the classical Stirling Numbers of Combinatorics. These may be expressed in terms of infinite, but row-finite, matrices, which may also be considered as endomorphisms of C[x]. This leads us to consider endomorphisms in more general spaces, and these in turn may be expressed in terms of generalizations of the ladder-operators familiar in physics

    Similar works

    Full text

    thumbnail-image

    Open Research Online (The Open University)

    redirect

    This paper was published in Open Research Online (The Open University).

    Having an issue?

    Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.