Communicating optimized decision input from stochastic turbulence forecasts

Abstract

The uncertainty of weather forecasts contributes to mission risk. Ensemble data can improve combat capability by incorporating forecast uncertainty into the warfighter decision process. The study transforms raw ensemble data into optimized decision inputs for upper level turbulence using ORM principles and decision science. It demonstrates the methodology and importance of incorporating ambiguity, the uncertainty in forecast uncertainty, into the decision making process using the Taijitu method to estimate ambiguity. Comparing ambiguity and risk tolerance uncertainty intervals produces a more appropriate decision input compared to currently existing methods. Significant differences between the current and research derived decision input products demonstrate potential value added to decision making by incorporating ambiguity information. An effective visualization is devised for varying levels of risk tolerance and mission thresholds that is educational and practical for users. Research procedures and results can serve as an example to further education and development of stochastic methods in the Air Force and Department of Defense.Approved for public release; distribution is unlimited.US Air Force (USAF) author.http://archive.org/details/communicatingopt10945414

Similar works

Full text

thumbnail-image

Calhoun, Institutional Archive of the Naval Postgraduate School

redirect
Last time updated on 26/05/2016

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.