Article thumbnail
Location of Repository

Ryanodine Receptor Regulation by Intramolecular Interaction between Cytoplasmic and Transmembrane Domains

By Christopher H. George, Hala Jundi, N. Lowri Thomas, Mark Scoote, Nicola Walters, Alan J. Williams and F. Anthony Lai

Abstract

Ryanodine receptors (RyR) function as Ca(2+) channels that regulate Ca(2+) release from intracellular stores to control a diverse array of cellular processes. The massive cytoplasmic domain of RyR is believed to be responsible for regulating channel function. We investigated interaction between the transmembrane Ca(2+)-releasing pore and a panel of cytoplasmic domains of the human cardiac RyR in living cells. Expression of eGFP-tagged RyR constructs encoding distinct transmembrane topological models profoundly altered intracellular Ca(2+) handling and was refractory to modulation by ryanodine, FKBP12.6 and caffeine. The impact of coexpressing dsRed-tagged cytoplasmic domains of RyR2 on intracellular Ca(2+) phenotype was assessed using confocal microscopy coupled with parallel determination of in situ protein: protein interaction using fluorescence resonance energy transfer (FRET). Dynamic interactions between RyR cytoplasmic and transmembrane domains were mediated by amino acids 3722-4610 (Interacting or ā€œIā€-domain) which critically modulated intracellular Ca(2+) handling and restored RyR sensitivity to caffeine activation. These results provide compelling evidence that specific interaction between cytoplasmic and transmembrane domains is an important mechanism in the intrinsic modulation of RyR Ca(2+) release channels

Topics: Articles
Publisher: The American Society for Cell Biology
Year: 2004
DOI identifier: 10.1091/mbc.E03-09-0688
OAI identifier: oai:pubmedcentral.nih.gov:420088
Provided by: PubMed Central
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://dx.doi.org/10.1091/mbc.... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.