Askey-Wilson type functions with bound states

Abstract

The two linearly independent solutions of the three-term recurrence relation of the associated Askey-Wilson polynomials, found by Ismail and Rahman in [22], are slightly modified so as to make it transparent that these functions satisfy a beautiful symmetry property. It essentially means that the geometric and the spectral parameters are interchangeable in these functions. We call the resulting functions the Askey-Wilson functions. Then, we show that by adding bound states (with arbitrary weights) at specific points outside of the continuous spectrum of some instances of the Askey-Wilson difference operator, we can generate functions that satisfy a doubly infinite three-term recursion relation and are also eigenfunctions of q-difference operators of arbitrary orders. Our result provides a discrete analogue of the solutions of the purely differential version of the bispectral problem that were discovered in the pioneering work [8] of Duistermaat and Grunbaum

Similar works

Full text

thumbnail-image

DIAL UCLouvain

redirect
Last time updated on 14/05/2016

This paper was published in DIAL UCLouvain.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.