Abstract

he vision of the Internet-of-Things (IoT) calls for the deployment of trillions of wireless sensor nodes (WSNs) in our environment. A sustainable deployment of such a large number of electronic systems needs to be addressed with a Design-for-the-Environment approach. This requires minimiz- ing 1) the embodied energy and carbon footprint of the WSN production, 2) the ecotoxicity of the WSN e-waste, and 3) the internet traffic associated to the data generated by the WSNs. In this paper, we study how ultra-low-power yet high-performance systems-on-a-chip (SoCs) in nanometer CMOS technologies can contribute to these objectives by allowing compact batteryless WSNs with on-node data processing. We then review latest results achieved at the Universite ́ catholique de Louvain in the field of green SoC design for a massive yet sustainable deployment of the IoT

Similar works

Full text

thumbnail-image

DIAL UCLouvain

redirect
Last time updated on 14/05/2016

This paper was published in DIAL UCLouvain.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.