Location of Repository

Terminal differentiation and calcification in rabbit chondrocyte cultures grown in centrifuge tubes: regulation by transforming growth factor beta and serum factors.

By Y Kato, M Iwamoto, T Koike, F Suzuki and Y Takano

Abstract

Rabbit chondrocyte cultures on plastic dishes are capable of depositing a cartilaginous matrix, although the matrix does not calcify unless high levels of phosphate are added to the medium. In the present study, we cultivated a pelleted mass of rabbit growth-plate chondrocytes in the presence of Eagle's minimum essential medium supplemented with 10% fetal bovine serum and 50 micrograms of ascorbic acid per ml in a plastic centrifuge tube. These cells proliferated for several generations and then reorganized into a cartilage-like tissue that calcified without additional phosphate. The deposition of minerals was observed only after synthesis of a short-chain collagen and alkaline phosphatase. Serum factors were required for the increases in alkaline phosphatase and calcium contents. 5-Bromo-2'-deoxyuridine abolished the increases in uronic acid, alkaline phosphatase, and calcium contents. Transforming growth factor beta, at very low concentrations, suppressed the expression of the mineralization-related phenotype by chondrocytes. These results suggest that cartilage-matrix calcification can be controlled by growth factor(s) and that chondrocytes induce the mineralization of extracellular matrix when terminal differentiation is permitted in the absence of an artificial substrate

Topics: Research Article
Year: 1988
OAI identifier: oai:pubmedcentral.nih.gov:282794
Provided by: PubMed Central
Sorry, our data provider has not provided any external links therefore we are unable to provide a link to the full text.

Suggested articles


To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.