Skip to main content
Article thumbnail
Location of Repository

Gene positional changes relative to the nuclear substructure correlate with the proliferating status of hepatocytes during liver regeneration

By Apolinar Maya-Mendoza, Rolando Hernández-Muñoz, Patricio Gariglio and Armando Aranda-Anzaldo


In the interphase nucleus the DNA of higher eukaryotes is organised in loops anchored to a proteinaceous substructure variously named but commonly known as the nuclear matrix. Important processes of nuclear physiology, such as replication, transcription and processing of primary transcripts, occur at macromolecular complexes located at discrete sites upon the nuclear substructure. The topological relationships between gene sequences located in the DNA loops and the nuclear substructure appear to be non-random, thus posing the question of whether such relationships remain invariant or change after the critical nuclear transitions associated with cell proliferation and tissue regeneration in vivo. The hepatocytes are cells that preserve a proliferating capacity that is readily displayed after partial ablation of the liver, leading to liver regeneration in experimental animals such as the rat. Using this animal model coupled to a recently developed PCR-based method for mapping the position of specific DNA sequences relative to the nuclear substructure, we provide evidence that transient changes in the topological relationships between specific genes and the nuclear substructure occur during liver regeneration and that such changes correlate with the actual proliferating status of the cells, thus suggesting that specific transitions in the higher-order DNA structure are characteristic of the quiescent (G0) and replicating (S) phases of the cell cycle in vivo

Topics: Articles
Publisher: Oxford University Press
Year: 2003
DOI identifier: 10.1093/nar
OAI identifier:
Provided by: PubMed Central
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.