Location of Repository

Transition of Chemolithotroph Ferrobacillus ferrooxidans to Obligate Organotrophy and Metabolic Capabilities of Glucose-Grown Cells

By Fred Shafia, Karen R. Brinson, Michael W. Heinzman and James M. Brady


Transition of chemolithotrophic Ferrobacillus ferrooxidans to organotrophy occurred after 60 hr of incubation in an organic medium. Three distinct phases, based on metabolic activities of cells, were observed during the course of transition. Conversion of cellular nutrition to organotrophy resulted in a gradual loss of Fe2+ oxidation and cessation of CO2 fixation. These changes were concomitant with a rapid increase in uptake of glucose and phosphate during the latter part of transition period. The outcome of transition was governed by the pH of the medium, temperature of incubation, availability of oxygen, age of the chemolithotrophic cells, and the type of energy and carbon source available to the bacterium. Presence or absence of p-aminobenzoic acid and Fe2+ ions did not influence transition of cells. A defined medium containing glucose, mineral salts, and p-aminobenzoic acid at pH 2.5 was found to be most suitable for transition and for culture of heterotrophic convertants. Maximum growth rate of the heterotrophic cells was attained with vigorous aeration at 35 C. The bacterium could be cultured on a variety of organic compounds, including complex organic media, provided they were used in low concentrations. Serological studies on autotrophic cells and the heterotrophic convertant have shown a definite antigenic relationship between the two cell types

Topics: Physiology and Metabolism
Year: 1972
OAI identifier: oai:pubmedcentral.nih.gov:251239
Provided by: PubMed Central
Sorry, our data provider has not provided any external links therefore we are unable to provide a link to the full text.

Suggested articles

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.