Skip to main content
Article thumbnail
Location of Repository

An apparent deletion of an oligonucleotide detected by RNA fingerprint in the nondiabetogenic B variant of encephalomyocarditis virus is caused by a point mutation.

By J W Yoon, A K Wong, Y S Bae and H M Eun


The diabetogenic D variant of encephalomyocarditis virus (EMC-D) was previously shown to be different from the nondiabetogenic B variant of encephalomyocarditis virus (EMC-B) by a single spot in an oligonucleotide fingerprint after RNase T1 digestion of their genomic RNAs. An oligoribonucleotide was missing from EMC-B but was present in EMC-D. The oligoribonucleotide specific to EMC-D was isolated from a two-dimensional polyacrylamide gel and sequenced as 5'-ACAAUCUCACUUUUCCAACAACAG-3'. Molecular hybridizations of EMC-D and EMC-B genomic RNAs with a DNA primer complementary to the EMC-D-specific oligoribonucleotide revealed that the absence of a corresponding spot in EMC-B was due to a point mutation rather than a deletion. By sequencing a cloned cDNA of EMC-B corresponding to the EMC-D-specific oligoribonucleotide, the point mutation was identified as a G for EMC-B and an A for EMC-D transversion at base 9 of the oligonucleotide. Comparative sequence analysis of eight randomly picked RNA segments around the EMC-D-specific oligoribonucleotide revealed that there were no base changes between EMC-D and EMC-B. It is concluded that the diabetogenic EMC-D viral genome differs from the nondiabetogenic EMC-B viral genome by at least a point mutation

Topics: Research Article
Year: 1988
OAI identifier:
Provided by: PubMed Central
Sorry, our data provider has not provided any external links therefore we are unable to provide a link to the full text.

Suggested articles

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.