Skip to main content
Article thumbnail
Location of Repository

Regulatory factors affecting alpha-amylase production in bacillus licheniformis.

By N Saito and K Yamamoto

Abstract

Possible factors regulating alpha-mylase synthesis in wild-type Bacillus licheniformis and in mutants producing elevated levels of the enzyme were studied in terms of catabolite repression, apparent temperature-sensitive repression, induction, and culture age. The synthesis of alpha-amylase in the parent strain occurred long after the culture reached the stationary phase of growth as a result of de novo protein synthesis, occurred only at high temperature around 50 C and not below 45 C, appeared to be induced in the presence of oligosaccharides with some linkage of alpha-1,4-, beta-1,4, beta-1,6-glucosyl glucose, or alpha-1,6-galactosyl glucose, and was repressed by the addition of exogenous glucose or low-molecular-weight metabolites. The addition of cyclic adenosine 3',5'-monophosphate stimulated alpha-amylase accumulation in growing cultures of the parent strain, but neither shortened the long lap period prior to the start of alpha-amylase synthesis nor mitigated the repressive effect of glucose. Mutant strains derived from the parent strain showed variation in the pattern of alpha-amylase synthesis, and some of them such as F-12s and F-14 produced alpha-amylase constitutively and without sensitivity to catabolite repression or transient repression from the moment of cell growth. These results are discussed in relation to possible regulatory mechanisms that might account for the observed characteristics of alpha-amylase synthesis in this facultative thermophilic microorganism

Topics: Research Article
Year: 1975
OAI identifier: oai:pubmedcentral.nih.gov:246011
Provided by: PubMed Central
Sorry, our data provider has not provided any external links therefore we are unable to provide a link to the full text.

Suggested articles


To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.