Location of Repository

Microbial Growth Modification by Compressed Gases and Hydrostatic Pressure

By Stephen R. Thom and Robert E. Marquis

Abstract

Studies of the growth-modifying actions for Escherichia coli, Saccharomyces cerevisiae, and Tetrahymena thermophila of helium, nitrogen, argon, krypton, xenon, and nitrous oxide led to the conclusion that there are two definable classes of gases. Class 1 gases, including He, N2, and Ar, are not growth inhibitors; in fact, they can reverse the growth inhibitory action of hydrostatic pressures. Class 2 gases, including Kr, Xe, and N2O, are potent growth inhibitors at low pressures. For example, at 24°C, 50% growth-inhibitory pressures of N2O were found to be ca. 1.7 MPa for E. coli, 1.0 MPa for S. cerevisiae, and 0.5 MPa for T. thermophila. Class 1 gases could act as potentiators for growth inhibition by N2O, O2, Kr, or Xe. Hydrostatic pressure alone is known to reverse N2O inhibition of growth, but we found that it did not greatly alter oxygen toxicity. Therefore, potentiation by class 1 gases appeared to be a gas effect rather than a pressure effect. The temperature profile for growth inhibition of S. cerevisiae by N2O revealed an optimal temperature for cell resistance of ca. 24°C, with lower resistance at higher and lower temperatures. Overall, it appeared that microbial growth modification by hyperbaric gases could not be related to their narcotic actions but reflected definably different physiological actions

Topics: Physiology and Biotechnology
Year: 1984
OAI identifier: oai:pubmedcentral.nih.gov:239765
Provided by: PubMed Central
Sorry, our data provider has not provided any external links therefor we are unable to provide a PDF.

Suggested articles


To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.