Skip to main content
Article thumbnail
Location of Repository

Mutational trends in V3 loop protein sequences observed in different genetic lineages of human immunodeficiency virus type 1.

By B T Korber, K MacInnes, R F Smith and G Myers


Highly variable international human immunodeficiency virus type 1 envelope sequences can be assigned to six major clades, or phylogenetically defined subtypes, designated A through F. These subtypes are approximately equidistant in terms of evolutionary distance measured by nucleotide sequences. This radiation from a common ancestral sequence may have been in step with the spread of the pandemic. In this study, V3 loop protein sequence relationships within these major clades are analyzed to determine how the different lineages might be evolving with respect to this biologically important domain. The V3 loop has been shown to influence viral phenotype and to elicit both humoral and cellular immune responses. To identify patterns in V3 loop amino acid evolution, we cluster the sequences by a phenetic principle which evaluates protein similarities on the basis of amino acid identities and similarities irrespective of evolutionary relationships. When phenetic clustering patterns are superimposed upon phylogenetic subtype classifications, two interesting mutational trends are revealed. First, a set of identical, or highly similar, V3 loop protein sequences can be identified within two otherwise dissimilar genetic subtypes, A and C. Second, the D subtype sequences are found to possess the most radically divergent set of V3 loop sequences. These and other patterns characteristic of the V3 loop reflect the acquisition of specific biological properties during the apparently recent evolution of the human immunodeficiency virus type 1 lineages

Topics: Research Article
Year: 1994
OAI identifier:
Provided by: PubMed Central
Sorry, our data provider has not provided any external links therefore we are unable to provide a link to the full text.

Suggested articles

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.