Location of Repository

Transformation of Mouse Fibroblasts by Jaagsiekte Sheep Retrovirus Envelope Does Not Require Phosphatidylinositol 3-Kinase

By Naoyoshi Maeda, Yasuo Inoshima, David A. Fruman, Saskia M. Brachmann and Hung Fan

Abstract

Jaagsiekte sheep retrovirus (JSRV) is the causative agent of ovine pulmonary adenocarcinoma, a transmissible lung cancer of sheep. The envelope of JSRV may have oncogenic properties, since it can morphologically transform mouse NIH 3T3 cells and other fibroblast lines. Recently, we found that the cytoplasmic tail of the envelope transmembrane (TM) protein is necessary for transformation, and in particular a consensus binding motif (YXXM) for phosphatidylinositol 3-kinase (PI3K) is important. Moreover, JSRV-transformed cells show phosphorylation (activation) of Akt/protein kinase B, a downstream target of PI3K. In these studies, we directly tested for the involvement of PI3K in transformation by JSRV. Contrary to expectations, four different experiments indicated that PI3K is not necessary for JSRV-induced transformation: (i) cotransfection with a dominant negative truncated form of the PI3K regulatory subunit (Δp85) did not affect transformation frequency, (ii) cells stably expressing Δp85 showed the same frequencies of transformation as parental NIH 3T3 cells, (iii) fibroblasts established from double-knockout mice lacking PI3K p85α and p85β could be transformed with JSRV envelope, and (iv) incubation of cells with the PI3K inhibitor LY294002 did not specifically inhibit transformation, nor did the drug reverse transformation of JSRV-transformed cells. One alternate explanation for the lack of transformation by YXXM mutants could be that they were defective in intracellular trafficking. However, confocal microscopy of epitope-tagged envelope proteins of both wild-type and nontransforming YXXM mutants showed a cell surface or plasma membrane localization. While PI3K is not required for JSRV-induced transformation of NIH 3T3 cells, the downstream target Akt kinase was found to be activated (phosphorylated) in JSRV-transformed PI3K-negative cells. Therefore, JSRV envelope can induce PI3K-independent phosphorylation of Akt

Topics: Transformation and Oncogenesis
Publisher: American Society for Microbiology
Year: 2003
DOI identifier: 10.1128/JVI.77.18.9951-9959.2003
OAI identifier: oai:pubmedcentral.nih.gov:224593
Provided by: PubMed Central
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://dx.doi.org/10.1128/JVI.... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.