Location of Repository

Molybdate transport by Bradyrhizobium japonicum bacteroids.

By R J Maier and L Graham

Abstract

Bacteroid suspensions of Bradyrhizobium japonicum USDA 136 isolated from soybeans grown in Mo-deficient conditions were able to transport molybdate at a nearly constant rate for up to 1 min. The apparent Km for molybdate was 0.1 microM, and the Vmax was about 5 pmol/min per mg (dry weight) of bacteroid. Supplementation of bacteroid suspensions with oxidizable carbon sources did not markedly increase molybdate uptake rates. Anaerobically isolated bacteroids accumulated twice as much Mo in 1 h as aerobically isolated cells did, but the first 5 min of molybdate uptake was not dependent on the isolation condition with respect to O2. Respiratory inhibitors such as cyanide, azide, and hydroxylamine did not appreciably affect molybdate uptake, even at concentrations that inhibited O2 uptake. The uncouplers carbonyl cyanide m-chlorophenylhydrazone (CCCP) and carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) and the ionophores nigericin and monensin significantly inhibited molybdate uptake. The electrogenic ionophores valinomycin and gramicidin stimulated molybdate uptake. Rapid pH shift experiments indicated that molybdate transport depends on a transmembrane proton gradient (delta pH), and it is probably transported electroneutrally as H2MoO4. Most of the 99MoO4(2-) taken up was not exchangeable with a 100-fold excess of unlabeled MoO4(2-). Tungstate was a competitive inhibitor of molybdate uptake, with a Ki of 0.034 microM, and vanadate inhibited molybdate uptake slightly

Topics: Research Article
Year: 1988
OAI identifier: oai:pubmedcentral.nih.gov:211659
Provided by: PubMed Central
Sorry, our data provider has not provided any external links therefore we are unable to provide a link to the full text.

Suggested articles


To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.