Location of Repository

Sphingosine 1-phosphate promotes endothelial cell barrier integrity by Edg-dependent cytoskeletal rearrangement

By Joe G.N. Garcia, Feng Liu, Alexander D. Verin, Anna Birukova, Melissa A. Dechert, William T. Gerthoffer, James R. Bamberg and Denis English

Abstract

Substances released by platelets during blood clotting are essential participants in events that link hemostasis and angiogenesis and ensure adequate wound healing and tissue injury repair. We assessed the participation of sphingosine 1-phosphate (Sph-1-P), a biologically active phosphorylated lipid growth factor released from activated platelets, in the regulation of endothelial monolayer barrier integrity, which is key to both angiogenesis and vascular homeostasis. Sph-1-P produced rapid, sustained, and dose-dependent increases in transmonolayer electrical resistance (TER) across both human and bovine pulmonary artery and lung microvascular endothelial cells. This substance also reversed barrier dysfunction elicited by the edemagenic agent thrombin. Sph-1-P–mediated barrier enhancement was dependent upon Giα-receptor coupling to specific members of the endothelial differentiation gene (Edg) family of receptors (Edg-1 and Edg-3), Rho kinase and tyrosine kinase-dependent activation, and actin filament rearrangement. Sph-1-P–enhanced TER occurred in conjunction with Rac GTPase- and p21-associated kinase–dependent endothelial cortical actin assembly with recruitment of the actin filament regulatory protein, cofilin. Platelet-released Sph-1-P, linked to Rac- and Rho-dependent cytoskeletal rearrangement, may act late in angiogenesis to stabilize newly formed vessels, which often display abnormally increased vascular permeability

Topics: Article
Publisher: American Society for Clinical Investigation
Year: 2001
OAI identifier: oai:pubmedcentral.nih.gov:209379
Provided by: PubMed Central
Sorry, our data provider has not provided any external links therefor we are unable to provide a PDF.

Suggested articles


To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.