Skip to main content
Article thumbnail
Location of Repository

Immobilization of Leachable Toxic Soil Pollutants by Using Oxidative Enzymes †

By Michael J. R. Shannon and Richard Bartha

Abstract

Screening of leachable toxic chemicals in a horseradish peroxidase-H2O2 immobilization system established that immobilization was promising for most phenolic pollutants but not for benzoic acid, 2,6-dinitrocresol, or dibutyl phthalate. The treatment did not mobilize inherently nonmobile pollutants such as anilines and benzo[a]pyrene. In a separate study, an extracellular laccase in the culture filtrate of Geotrichum candidum was selected from five fungal enzymes evaluated as a cost-effective substitute for horseradish peroxidase. This enzyme was used in demonstrating the immobilization and subsequent fate of 14C-labeled 4-methylphenol and 2,4-dichlorophenol in soil columns. When applied to Lakewood sand, 98.1% of 4-methylphenol was leached through with distilled water. Two days after immobilization treatment with the G. candidum culture filtrate, only 9.1% of the added 4-methylphenol was leached with the same volume of water. Of the more refractory test pollutant 2,4-dichlorophenol, 91.6% had leached at time zero and 48.5% had leached 1 day after the immobilization treatment. However, 2 weeks after immobilization, only 12.0% of the 2,4-dichlorophenol was leached compared with 61.7% from the control column that received no immobilization treatment. No remobilization of the bound pollutants was detected during 3- and 4-week incubation periods. Enzymatic immobilization of phenolic contaminants in soil appears to be a promising technique for the reduction of groundwater pollution by such substances

Topics: Applied Environmental and Public Health Microbiology
Year: 1988
OAI identifier: oai:pubmedcentral.nih.gov:202735
Provided by: PubMed Central
Sorry, our data provider has not provided any external links therefore we are unable to provide a link to the full text.

Suggested articles


To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.