Skip to main content
Article thumbnail
Location of Repository

Three Genes for Metabolism of the Phytoalexin Maackiain in the Plant Pathogen Nectria haematococca: Meiotic Instability and Relationship to a New Gene for Pisatin Demethylase

By V. P. W. Miao and H. D. Vanetten


Some isolates of the plant-pathogenic fungus Nectria haematococca mating population (MP) VI metabolize maackiain and medicarpin, two antimicrobial compounds (phytoalexins) synthesized by chickpea (Cicer arietinum L.). The enzymatic modifications by the fungus convert the phytoalexins to less toxic derivatives, and this detoxification has been proposed to be important for pathogenesis on chickpea. In the present study, loci controlling maackiain metabolism (Mak genes) were identified by crosses among isolates of N. haematococca MP VI that differed in their ability to metabolize the phytoalexin. Strains carrying Mak1 or Mak2 converted maackiain to 1a-hydroxymaackiain, while those with Mak3 converted it to 6a-hydroxymaackiain. Mak1 and Mak2 were unusual in that they often failed to be inherited by progeny. Mak1 was closely linked to Pda6, a new member in a family of genes in N. haematococca MP VI that encode enzymes for detoxification of pisatin, the phytoalexin synthesized by garden pea. Like Mak1, Pda6 was also transmitted irregularly to progeny. Although the unusual meiotic behaviors of some Mak genes complicate genetic analysis, identification of these genes should afford a more through evaluation of the role of phytoalexin detoxification in the pathogenesis of N. haematococca MP VI on chickpea

Topics: Microorganism-Plant Interactions
Year: 1992
OAI identifier:
Provided by: PubMed Central
Sorry, our data provider has not provided any external links therefore we are unable to provide a link to the full text.

Suggested articles

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.