Article thumbnail
Location of Repository

Construction of a water-soluble form of penicillin-binding protein 2a from a methicillin-resistant Staphylococcus aureus isolate.

By C Y Wu, J Hoskins, L C Blaszczak, D A Preston and P L Skatrud

Abstract

The mecA gene from methicillin-resistant Staphylococcus aureus 27r, which encodes the membrane-bound penicillin-binding protein 2a (PBP 2a), was cloned, sequenced, and expressed in Escherichia coli. PBP 2a is the major factor that mediates methicillin resistance in staphylococci. The DNA sequence of the mecA gene from strain 27r was greater than 99% identical to the DNA sequence of other S. aureus mecA genes and the mecA gene from Staphylococcus epidermidis. Analysis of the deduced amino acid sequence of PBP 2a from strain 27r revealed a hydrophobic region at the amino terminus that possessed characteristics of an uncleaved signal peptide such as those found in type II integral membrane proteins. Site-specific mutagenesis was used to modify the strain 27r mecA gene to permit removal of the region encoding the putative transmembrane region (amino acids 2 to 22). When it was expressed in E. coli, the modified mecA gene from strain 27r encoded a water-soluble form of PBP 2a that was detectable in the cytoplasm of transformants. The water-soluble form of PBP 2a protein from S. aureus 27r retained the same binding efficiency for beta-lactam antibiotics as the unmodified membrane-bound PBP 2a from S. aureus 27r

Topics: Research Article
Year: 1992
DOI identifier: 10.1128/aac.36.3.533
OAI identifier: oai:pubmedcentral.nih.gov:190552
Provided by: PubMed Central
Sorry, our data provider has not provided any external links therefore we are unable to provide a link to the full text.

Suggested articles


To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.