Location of Repository

Protection against endotoxic shock and lipopolysaccharide-induced local inflammation by tetracycline: correlation with inhibition of cytokine secretion.

By L Shapira, W A Soskolne, Y Houri, V Barak, A Halabi and A Stabholz

Abstract

Septic shock results from excessive stimulation of host immune cells, particularly monocytes and macrophages, by lipopolysaccharide (LPS) released from gram-negative bacteria. Macrophage-derived cytokines, such as tumor necrosis factor alpha (TNF-alpha) and interleukin-1beta (IL-1 beta), have been identified as central mediators in the pathogenesis of septic shock and the resultant mortality. Therefore, these cytokines were targets for experimental therapy for septic shock. Because of tetracycline's ability to intervene in cellular mechanisms involved in cytokine secretion, we tested the effect of tetracycline on LPS-induced septic shock and inflammatory lesions in mice. Tetracycline was found to protect mice against LPS-induced lethality and to abolish clinical signs of LPS-induced inflammatory lesions. This protection correlates with tetracycline's ability to reduce LPS-induced TNF-alpha levels in serum. Furthermore, tetracycline was found to inhibit LPS-induced TNF-alpha and IL-1 beta secretion, but not cytokine mRNA accumulation, in human monocytes in vitro. The results presented here suggest that tetracycline is a potent drug for LPS-induced pathology and that its mechanism of action involves blockage of posttranscriptional events of cytokine production

Topics: Research Article
Year: 1996
OAI identifier: oai:pubmedcentral.nih.gov:173843
Provided by: PubMed Central
Sorry, our data provider has not provided any external links therefor we are unable to provide a PDF.

Suggested articles


To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.