Article thumbnail
Location of Repository

Purification and characterization of phenylacetaldehyde reductase from a styrene-assimilating Corynebacterium strain, ST-10.

By N Itoh, R Morihama, J Wang, K Okada and N Mizuguchi

Abstract

A novel phenylacetaldehyde reductase was purified about 50-fold to homogeneity from Corynebacterium sp. strain ST-10, which can assimilate gaseous styrene as the sole carbon and energy source. The enzyme was inductively synthesized when grown on gaseous styrene and had an important role in styrene metabolism in vivo. The enzyme had a molecular weight of 155,000 and was composed of four identical subunits (molecular weight, 42,000). The enzyme catalyzed the reduction of not only phenylacetaldehyde but also various aldehydes and ketones; however, it did not catalyze the reverse reaction, the dehydrogenation of 2-phenylethanol. The enzyme required NADH as a cofactor and showed no activity with NADPH; therefore, it was defined as an NADH-dependent phenylacetaldehyde reductase. The enzyme stereospecifically produced (S)-(-)-1-phenylethanol from acetophenone; therefore, it would be useful as a biocatalyst

Topics: Research Article
Year: 1997
OAI identifier: oai:pubmedcentral.nih.gov:168687
Provided by: PubMed Central
Sorry, our data provider has not provided any external links therefore we are unable to provide a link to the full text.

Suggested articles


To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.