Article thumbnail
Location of Repository

Two NADPH:Protochlorophyllide Oxidoreductases in Barley: Evidence for the Selective Disappearance of PORA during the Light-Induced Greening of Etiolated Seedlings.

By S. Reinbothe, C. Reinbothe, H. Holtorf and K. Apel


Chlorophyll synthesis in barley is controlled by two different light-dependent NADPH:protochlorophyllide oxidoreductases, termed PORA and PORB. PORA is present abundantly in etioplasts but selectively disappears soon after the beginning of illumination. This negative light effect is mediated simultaneously at three different levels. First, the concentration of porA mRNA declines drastically during illumination of dark-grown seedlings. Second, the plastids' ability to import the precursor of PORA (pPORA) is reduced during the transition from etioplasts to chloroplasts. This effect is due to a rapid decline in the plastidic level of protochlorophyllide (Pchlide), which is required for the translocation of the pPORA. Third, PORA becomes selectively destabilized in illuminated seedlings. When illuminated, PORA-Pchlide-NADPH complexes formed in the dark photoreduce their Pchlide to Chlide and become simultaneously susceptible to attack by plastid proteases. The PORA-degrading protease activity is not detectable in etioplasts but is induced during illumination. In contrast to PORA, the second Pchlide-reducing enzyme, PORB, remains operative in both illuminated and green plants. Its translocation into plastids does not depend on its substrate, Pchlide

Topics: Research Article
Year: 1995
DOI identifier: 10.1105/tpc.7.11.1933
OAI identifier:
Provided by: PubMed Central
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.