Article thumbnail
Location of Repository

PPARγ ligands inhibit primary tumor growth and metastasis by inhibiting angiogenesis

By Dipak Panigrahy, Samuel Singer, Lucy Q. Shen, Catherine E. Butterfield, Deborah A. Freedman, Emy J. Chen, Marsha A. Moses, Susan Kilroy, Stefan Duensing, Christopher Fletcher, Jonathan A. Fletcher, Lynn Hlatky, Philip Hahnfeldt, Judah Folkman and Arja Kaipainen

Abstract

Several drugs approved for a variety of indications have been shown to exhibit antiangiogenic effects. Our study focuses on the PPARγ ligand rosiglitazone, a compound widely used in the treatment of type 2 diabetes. We demonstrate, for the first time to our knowledge, that PPARγ is highly expressed in tumor endothelium and is activated by rosiglitazone in cultured endothelial cells. Furthermore, we show that rosiglitazone suppresses primary tumor growth and metastasis by both direct and indirect antiangiogenic effects. Rosiglitazone inhibits bovine capillary endothelial cell but not tumor cell proliferation at low doses in vitro and decreases VEGF production by tumor cells. In our in vivo studies, rosiglitazone suppresses angiogenesis in the chick chorioallantoic membrane, in the avascular cornea, and in a variety of primary tumors. These results suggest that PPARγ ligands may be useful in treating angiogenic diseases such as cancer by inhibiting angiogenesis

Topics: Article
Publisher: American Society for Clinical Investigation
Year: 2002
DOI identifier: 10.1172/JCI15634
OAI identifier: oai:pubmedcentral.nih.gov:151148
Provided by: PubMed Central
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://dx.doi.org/10.1172/JCI1... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.