Kinematics: On Direction Cosine Matrices

Abstract

Motion mechanics (dynamics) comprises kinetics to describe the implications of applied forces and torques; and also kinematics (phoronomics). Developed in the 1700s, kinematics describes mathematical translations from one basis of measurement to another using common kinematic measurement variables like quaternions, Euler angles, and direction cosine matrices. Two ubiquitous rotation sequences are unquestionably adopted for developing modern direction cosine matrices from among the 12 potential options, stemming from applicability to aerospace systems, accuracy, and computation burden. This chapter provides a comprehensive reevaluation of all 12 options yielding a menu of options for accuracy and computational burdens, with the results illustrated compared to the ubiquitous two modernly adopted choices, broken into two rotational groups: symmetric rotations and nonsymmetric rotations. Validation will be provided by critical analysis of integration using step size to illustrate correlated minimal accuracy. No single rotational sequence is universally superior with respect to all figures of merit, enabling trade-space analysis between rotational sequences. One interesting revelation of one of the two ubiquitous sequences (the 3-1-3 symmetric sequence) is illustrated to have relatively less accuracy but lower computational burden than the other (the 3-2-1 nonsymmetric sequence). Meanwhile, a relatively unknown β€œ2-3-1” rotational sequence is shown to have similar computational burden and accuracy

Similar works

This paper was published in IntechOpen.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.