Article thumbnail
Location of Repository

Inhibition of Human Immunodeficiency Virus Type 1 (HIV-1) Replication by HIV-1-Based Lentivirus Vectors Expressing Transdominant Rev

By Mario R. Mautino, Nicholas Keiser and Richard A. Morgan


Retrovirus vectors expressing transdominant-negative mutants of Rev (TdRev) inhibit human immunodeficiency virus type 1 (HIV-1) replication by preventing the nuclear export of unspliced viral transcripts, thus inhibiting the synthesis of Gag-Pol, Env, and genomic RNA. The use of HIV-1–based vectors to express TdRev would have the advantage of allowing access to nondividing hematopoietic cells. It would also provide additional levels of protection by sequestering the viral regulatory proteins Tat and Rev, competing for encapsidation into wild-type virions, and inhibiting reverse transcription. Here we describe HIV-1-based vectors that express TdRev. These vectors contain mutations in the splicing signals or replacement of the Rev-responsive element by the simian retrovirus type 1 constitutive transport element, making them less sensitive to the inhibitory effects of TdRev. In addition, overexpression of Rev and the use of an HIV-1 helper plasmid that drives high levels of Gag-Pol synthesis were used to transiently overcome the inhibition by TdRev of the synthesis of Gag-Pol during vector production. SupT1 cells transduced with these vectors were more resistant to HIV-1 replication than cells transduced with Moloney murine leukemia virus-based vectors expressing TdRev. Furthermore, we show that these vectors can be mobilized by the wild-type virus, reducing the infectivity of virions escaping inhibition and conferring protection against HIV-1 replication to previously untransduced cells

Topics: Gene Therapy
Publisher: American Society for Microbiology
Year: 2001
DOI identifier: 10.1128/JVI.75.8.3590-3599.2001
OAI identifier:
Provided by: PubMed Central
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.