Skip to main content
Article thumbnail
Location of Repository

Partial Characterization of an Enzyme Fraction with Protease Activity Which Converts the Spore Peptidoglycan Hydrolase (SleC) Precursor to an Active Enzyme during Germination of Clostridium perfringens S40 Spores and Analysis of a Gene Cluster Involved in the Activity

By Seiko Shimamoto, Ryuichi Moriyama, Kazuhiro Sugimoto, Shigeru Miyata and Shio Makino

Abstract

A spore cortex-lytic enzyme of Clostridium perfringens S40 which is encoded by sleC is synthesized at an early stage of sporulation as a precursor consisting of four domains. After cleavage of an N-terminal presequence and a C-terminal prosequence during spore maturation, inactive proenzyme is converted to active enzyme by processing of an N-terminal prosequence with germination-specific protease (GSP) during germination. The present study was undertaken to characterize GSP. In the presence of 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid (CHAPS), a nondenaturing detergent which was needed for the stabilization of GSP, GSP activity was extracted from germinated spores. The enzyme fraction, which was purified to 668-fold by column chromatography, contained three protein components with molecular masses of 60, 57, and 52 kDa. The protease showed optimum activity at pH 5.8 to 8.5 in the presence of 0.1% CHAPS and retained activity after heat treatment at 55°C for 40 min. GSP specifically cleaved the peptide bond between Val-149 and Val-150 of SleC to generate mature enzyme. Inactivation of GSP by phenylmethylsulfonyl fluoride and HgCl2 indicated that the protease is a cysteine-dependent serine protease. Several pieces of evidence demonstrated that three protein components of the enzyme fraction are processed forms of products of cspA, cspB, and cspC, which are positioned in a tandem array just upstream of the 5′ end of sleC. The amino acid sequences deduced from the nucleotide sequences of the csp genes showed significant similarity and showed a high degree of homology with those of the catalytic domain and the oxyanion binding region of subtilisin-like serine proteases. Immunochemical studies suggested that active GSP likely is localized with major cortex-lytic enzymes on the exterior of the cortex layer in the dormant spore, a location relevant to the pursuit of a cascade of cortex hydrolytic reactions

Topics: Physiology and Metabolism
Publisher: American Society for Microbiology
Year: 2001
DOI identifier: 10.1128/JB.183.12.3742-3751.2001
OAI identifier: oai:pubmedcentral.nih.gov:95252
Provided by: PubMed Central
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://dx.doi.org/10.1128/JB.1... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.