Location of Repository

ActA is a dimer

By Philippe Mourrain, Iñigo Lasa, Alexis Gautreau, Edith Gouin, Anthony Pugsley and Pascale Cossart

Abstract

ActA, a surface protein of Listeria monocytogenes, is able to induce continuous actin polymerization at the rear of the bacterium, in the cytosol of the infected cells. Its N-terminal domain is sufficient to induce actin tail formation and movement. Here, we demonstrate, using the yeast two-hybrid system, that the N-terminal domain of ActA may form homodimers. By using chemical cross-linking to explore the possibility that ActA could be a multimer on the surface of the bacteria, we show that ActA is a dimer. Cross-linking experiments on various L. monocytogenes strains expressing different ActA variants demonstrated that the region spanning amino acids 97–126, and previously identified as critical for actin tail formation, is also critical for dimer formation. A model of actin polymerization by L. monocytogenes, involving the ActA dimer, is presented

Topics: Biological Sciences
Publisher: The National Academy of Sciences of the USA
Year: 1997
OAI identifier: oai:pubmedcentral.nih.gov:23296
Provided by: PubMed Central
Sorry, our data provider has not provided any external links therefor we are unable to provide a PDF.

Suggested articles


To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.