Location of Repository

Wiskott-Aldrich syndrome protein regulates podosomes in primary human macrophages

By Stefan Linder, David Nelson, Michael Weiss and Martin Aepfelbacher

Abstract

Wiskott-Aldrich syndrome protein (WASp) is a hematopoietic-specific, multidomain protein whose mutation is responsible for the immunodeficiency disorder Wiskott-Aldrich syndrome. WASp contains a binding motif for the Rho GTPase CDC42Hs as well as verprolin/cofilin-like actin-regulatory domains, but no specific actin structure regulated by CDC42Hs-WASp has been identified. We found that WASp colocalizes with CDC42Hs and actin in the core of podosomes, a highly dynamic adhesion structure of human blood-derived macrophages. Microinjection of constitutively active V12CDC42Hs or a constitutively active WASp fragment consisting of the verprolin/cofilin-like domains led to the disassemly of podosomes. Conversely, macrophages from patients expressing truncated forms of WASp completely lacked podosomes. These findings indicate that WASp controls podosome assembly and, in cooperation with CDC42Hs, podosome disassembly in primary human macrophages

Topics: Biological Sciences
Publisher: The National Academy of Sciences
Year: 1999
OAI identifier: oai:pubmedcentral.nih.gov:22264
Provided by: PubMed Central
Sorry, our data provider has not provided any external links therefore we are unable to provide a link to the full text.

Suggested articles


To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.