Skip to main content
Article thumbnail
Location of Repository

In vitro site-specific integration of bacteriophage DNA catalyzed by a recombinase of the resolvase/invertase family

By Helena M. Thorpe and Margaret C. M. Smith


The genome of the broad host range Streptomyces temperate phage, φC31, is known to integrate into the host chromosome via an enzyme that is a member of the resolvase/invertase family of site-specific recombinases. The recombination properties of this novel integrase on the phage and Streptomyces ambofaciens attachment sites, attP and attB, respectively, were investigated in the heterologous host, Escherichia coli, and in an in vitro assay by using purified integrase. The products of attP/B recombination, i.e., attL and attR, were identical to those obtained after integration of the prophage in S. ambofaciens. In the in vitro assay only buffer, purified integrase, and DNAs encoding attP and attB were required. Recombination occurred irrespective of whether the substrates were supercoiled or linear. A mutant integrase containing an S12F mutation was completely defective in recombination both in E. coli and in vitro. No recombination was observed between attB/attB, attP/attP, attL/R, or any combination of attB or attP with attL or attR, suggesting that excision of the prophage (attL/R recombination) requires an additional phage- or Streptomyces-encoded factor. Recombination could occur intramolecularly to cause deletion between appropriately orientated attP and attB sites. The results show that directionality in φC31 integrase is strictly controlled by nonidentical recombination sites with no requirement to form the topologically defined structures that are more typical of the resolvases/invertases

Topics: Biological Sciences
Publisher: The National Academy of Sciences
Year: 1998
OAI identifier:
Provided by: PubMed Central
Sorry, our data provider has not provided any external links therefore we are unable to provide a link to the full text.

Suggested articles

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.