Properties of Granular Materials as Heat Transfer and Storage Medium in CSP application

Abstract

A selection of granular natural and ceramic materials have been experimentally characterized with regard to their application as heat transfer and storage media in concentrating solar power plants. Thermophysical, thermomechanical, tribological and rheological measurements have been conducted in order to identify the most suitable candidates for this dynamic high temperature operation. Ceramic materials are found to comprise some advantages, but natural products offer a considerably more economical solution. Thermal bulk conductivity is found to be only marginally affected by the solid’s conductivity, while specific heat is almost the same for all solids. Ceramics entirely withstand thermal cycling, while quartz-containing materials are prone to severe degradation. Most materials are found to attain a saturated state of attrition while being sheared under load, wherein quartz sand offers the lowest mass fraction of debris at saturation level. In the investigated grain size range, all materials show excellent flowability. The generation of debris requires consideration in the design of the CSP storage components

Similar works

Full text

thumbnail-image

Institute of Transport Research:Publications

redirect
Last time updated on 28/04/2016

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.