Thermocapillary pumping of discrete drops in microfabricated analysis devices

Abstract

A nonmechanical pumping mechanism, thermocapillary pumping (TCP), is described for moving nanoliter- and picoliter-sized drops of liquid within microfabricated flow channels. In TCP, one end of a single drop is heated to create a surface tension difference between the ends of the drop. The induced surface tension difference causes a capillary pressure difference between the two drop ends and results in drop motion. TCP velocities of up to 20 mm/min were measured for several liquids at temperature differences between 10 and 70°C. An expression developed for TCP velocity yields predictions that agree with experimental velocities within corresponding uncertainty limits. Several techniques for assisting TCP are also suggested when contact angle hysteresis, the major factor limiting TCP velocities, is too large. These techniques include using surface treatments to reduce the contact angle hysteresis, converging channels to offset hysteresis, or an applied pressure to assist in movement.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/34237/1/690450215_ftp.pd

Similar works

Full text

thumbnail-image

Deep Blue Documents

redirect
Last time updated on 25/05/2012

This paper was published in Deep Blue Documents.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.