Skip to main content
Article thumbnail
Location of Repository

Local phase structure of wave dislocation lines: twist and twirl

By M.R. Dennis

Abstract

Generic wave dislocations (phase singularities, optical vortices) in three dimensions have anisotropic local structure, which is analysed, with emphasis on the twist of surfaces of equal phase along the singular line, and the rotation of the local anisotropy ellipse (twirl). Various measures of twist and twirl are compared in specific examples, and a theorem is found relating the (quantized) topological twist and twirl for a closed dislocation loop with the anisotropy C line index threading the loop

Topics: QA, QC
Year: 2004
OAI identifier: oai:eprints.soton.ac.uk:29389
Provided by: e-Prints Soton

Suggested articles

Citations

  1. (1965). and Stegun I A (ed)
  2. (2003). Braided nodal lines in wave superpositions
  3. (1974). Dislocationsin wave trains
  4. (2003). From Airy rings to the elliptic umbilic diffractioncatastropheJ.
  5. (2001). Geometry of phase and polarization singularities,illustratedby edge diffractionand the tides SingularOptics (Optical Vortices):
  6. (2001). Knotted and linked singularitiesin monochromaticwaves
  7. (2001). Knotting and unknottingof phase singularities: Helmholtz waves, paraxial waves and waves in 2+1 dimensionsJ.
  8. (2001). Local propertiesand statistics of phase singularitiesin generic wavefields SingularOptics (Optical Vortices):
  9. (2004). Local solutionsfor the interactionof wave dislocationsJ.
  10. (1999). Natural Focusing and Fine Structureof light: Caustics and Wave Dislocations(Bristol:
  11. (2000). Optical vortex trajectoriesOpt.
  12. (1996). Parameterizationand orbital angular momentum of anisotropicdislocations
  13. (1988). Phase saddles and dislocationsin two-dimensionalwaves such as the tides
  14. (2000). Phase singularitiesin isotropicrandom waves
  15. (2001). Polarizationsingularitiesin isotropicrandom vector waves
  16. (2002). Polarizationsingularitiesin paraxialvector fields: morphologyand statistics Opt.
  17. (2001). Propagation and control of noncanonicaloptical vorticesOpt.
  18. (1998). Self-imagingbeams and the Gouy effect Opt.
  19. (1983). Singular filaments organizechemical waves in three dimensions.
  20. (1983). Singular filaments organizechemical waves in three dimensions.III.
  21. (1984). Singular filaments organizechemical waves in three dimensions.IV.
  22. (1979). The elliptic umbilic diffractioncatastrophePhil.
  23. (1981). The motion and structureof dislocationsin wavefrontsProc.
  24. (1997). The topologyof symmetric, second-order3D tensor fields
  25. (1987). The wave structureof monochromaticelectromagneticradiation
  26. (2001). Topological singularitiesin wave fields
  27. V and HannayJ H 1977Umbilic pointson a Gaussian random surface

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.