Misregulation of tetrapyrrole biosynthesis in transgenic tobacco seedlings expressing mammalian biliverdin reductase

Abstract

Previous studies have established that the expression of mammalian biliverdin IXalpha reductase (BVR) in transgenic tobacco (Nicotiana tabacum cv. Maryland Mammoth) resulted in the loss of photoregulatory activity of all phytochromes together with a pronounced chlorophyll deficiency. This study was undertaken to assess the contribution of BVR-mediated alteration of tetrapyrrole metabolism to the observed phenotypes of BVR transgenic plants. BVR expression in dark-grown plants led to the reduced accumulation of protochlorophyllide and transcripts for the two committed enzymes for 5-aminolevulinic acid (ALA) synthesis despite the marked increased capacity for synthesis of ALA. Together with the observation that Mg-porphyrin accumulation in dark-grown seedlings treated with an iron chelator was unaffected by BVR expression, these results indicate that BVR diverts tetrapyrrole metabolism toward heme synthesis while also reducing heme levels to de-repress ALA synthesis. By contrast with dark-grown seedlings, light-grown BVR plants showed a marked inhibition of ALA synthesis compared with wild-type plants - a result that was correlated with the disappearance of the CHL I subunit of Mg-chelatase and an increase in heme oxygenase protein levels. As transcript levels of all tetrapyrrole biosynthetic genes tested were not strongly affected by BVR expression, these results implicate misregulated tetrapyrrole metabolism to be a major mechanism for BVR-dependent inhibition of chlorophyll biosynthesis in light-grown plants

Similar works

Full text

thumbnail-image

Southampton (e-Prints Soton)

redirect
Last time updated on 02/07/2012

This paper was published in Southampton (e-Prints Soton).

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.