New model for tracer-diffusion in amorphous solid

Abstract

The tracer-diffusion and structure of polymorphic states of amorphous solid is studied by mean of the statistic relaxation technique and simplex analysis. Several different metastable states of amorphous iron have been constructed based on the model containing 2 × 105 atoms. All models have almost the same pair radial distribution functions, but they differ in the potential energy per atom and the density. We found a large number of vacancy-simplexes which varies according to the relaxation and serves as a diffusion vehicle. New diffusion mechanism for tracer-diffusion is found of which the elementary diffusion process likes a collapse of “microscopic bubble” in amorphous matrix. This includes a jump of diffusing atom and the collective movement of a large number of neighboring atoms. The diffusion constant D determined in accordance with considered diffusion mechanism is in reasonable agreement with experimental data. The decrease in diffusion constant D upon thermal annealing is explained by the reducing vacancy-simplex concentration which is caused by both the local atomic rearrangement and the elimination of excess free volume

Similar works

Full text

thumbnail-image

EDP Sciences OAI-PMH repository (1.2.0)

redirect
Last time updated on 10/04/2020

This paper was published in EDP Sciences OAI-PMH repository (1.2.0).

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.