For a sound field observed on a sensor array, compressive sensing (CS)
reconstructs the direction-of-arrival (DOA) of multiple sources using a
sparsity constraint. The DOA estimation is posed as an underdetermined problem
by expressing the acoustic pressure at each sensor as a phase-lagged
superposition of source amplitudes at all hypothetical DOAs. Regularizing with
an ℓ1-norm constraint renders the problem solvable with convex
optimization, and promoting sparsity gives high-resolution DOA maps. Here, the
sparse source distribution is derived using maximum a posteriori (MAP)
estimates for both single and multiple snapshots. CS does not require inversion
of the data covariance matrix and thus works well even for a single snapshot
where it gives higher resolution than conventional beamforming. For multiple
snapshots, CS outperforms conventional high-resolution methods, even with
coherent arrivals and at low signal-to-noise ratio. The superior resolution of
CS is demonstrated with vertical array data from the SWellEx96 experiment for
coherent multi-paths.Comment: In press Journal of Acoustical Society of Americ
Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.