Location of Repository

The centre of quantum sl_n at a root of unity

By R.H. Tange

Abstract

It is proved that the centre Z of the simply connected quantised universal enveloping algebra over C, U_{?,P}(sl_n), ? a primitive l-th root of unity, l an odd integer >1, has a rational field of fractions. Furthermore it is proved that if l is a power of an odd prime, Z is a unique factorisation domain

Topics: QA
Year: 2006
OAI identifier: oai:eprints.soton.ac.uk:43535
Provided by: e-Prints Soton

Suggested articles

Preview

Citations

  1. (1970). Algèbre,
  2. (2004). Corps enveloppantes des algèbres de Lie en dimension infinie et en charactéristique positive, Thesis,
  3. (1968). Groupes et Algèbres de Lie,
  4. (1997). Ideals, Varieties, and Algorithms. An Introduction to Computational Algebraic Geometry and Commutative Algebra,
  5. (1974). Picard groups of homogeneous spaces of linear algebraic groups and one-dimensional homogeneous vector bundles,
  6. (1999). Quantification de la localisation de Dixmier de
  7. (1992). Quantum coadjoint action,
  8. (1992). Quantum groups, in: D-Modules, Representation Theory, and Quantum Groups,
  9. (1965). Regular elements of semi-simple algebraic groups,
  10. (1989). Representations of quantum groups at roots of 1, in: Operator Algebras, Unitary Representations, Enveloping Algebras, and Invariant Theory,
  11. Smooth polynomial identity algebras with almost factorial centers,
  12. (1976). Sur les algèbres enveloppantes de sl(n,C) et af(n,C),
  13. (1998). Sur une algèbre parabolique P de ˇ Uq(sln+1) et ses semi-invariants par l’action adjointe de
  14. (1986). The Zassenhaus variety of a classical semi-simple Lie algebra in finite characteristic,
  15. (2005). Zassenhaus varieties of general linear Lie algebras,

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.