Article thumbnail

A Lupinoside prevented fatty acid induced inhibition of insulin sensitivity in 3T3 L1 adipocytes

By Debleena Dey, Bikash C. Pal, Tanushree Biswas, Sib Sankar Roy, Arun Bandyopadhyay, Swapan Kumar Mandal, Bir Bhanu Giri and Samir Bhattacharya


The decrease in insulin sensitivity to target tissues or insulin resistance leads to type 2 diabetes mellitus, an insidious disease threatening global health. Numerous evidences made free fatty acids (FFAs) responsible for insulin resistance and type 2 diabetes. We demonstrate here that the damage of insulin acitivity by a free fatty acid, palmitate could be prevented by a lupinoside. An incubation of 3T3 L1 adipocytes with a FFA i.e. palmitate inhibited insulin stimulated uptake of 3H-2 deoxyglucose (2 DOG) significantly. Addition of a lupinoside purified from Pueraria tuberosa, lupinoside PA4 (LPA4) strongly prevented this inhibition. We then examined insulin signaling pathway where palmitate significantly inhibited insulin stimulated phosphorylation of Insulin receptor tyrosine kinase, IRS 1and PI3 kinase, PDK1 and Akt/PKB. LPA4 rescued this inhibition of signaling molecule by palmitate. Insulin mediated translocation of Glut4, the glucose transporter in insulin target cells, was effectively blocked by palmitate while, LPA4 waived this block. Administration of LPA4 to nutritionally induced diabetic rats significantly reduced the increase in plasma glucose. All these indicate LPA4 to be a potentially therapeutic agent for insulin resistance and type 2 diabetes

Topics: QL Zoology
Publisher: 'Springer Science and Business Media LLC'
Year: 2007
DOI identifier: 10.1007/s11010-006-9378-1
OAI identifier:
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)

  • To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.

    Suggested articles