Abstract

We report high resolution laser absorption spectroscopy of a single InGaAsGaAs self-assembled quantum dot embedded in a field-effect structure. We show experimentally that the interband optical absorption to the lower Zeeman branch of the singly charged exciton is strongly inhibited due to spin (Pauli) blockade of the optical transition. At high magnetic fields the optical absorption to the upper Zeeman branch dominates the absorption spectrum. We find, however, that the spin blockade is not complete and a 10% leakage remains at high magnetic fields. Applying a gate voltage to empty the dot of its resident electron turns the spin blockade off. This effect is observed at 1.5 K and up to 9 T. © 2005 American Institute of Physics.</p

Similar works

Full text

thumbnail-image

Heriot Watt Pure

redirect
Last time updated on 13/03/2015

This paper was published in Heriot Watt Pure.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.