Location of Repository

Twisted boundary conditions in lattice simulations

By C.T. Sachrajda and G. Villadoro

Abstract

By imposing twisted boundary conditions on quark fields it is possible to access components of momenta other than integer multiples of 2?/L on a lattice with spatial volume L3. We use chiral perturbation theory to study finite-volume effects with twisted boundary conditions for quantities without final-state interactions, such as meson masses, decay constants and semileptonic form factors, and confirm that they remain exponentially small with the volume. We show that this is also the case for partially twisted boundary conditions, in which (some of) the valence quarks satisfy twisted boundary conditions but the sea quarks satisfy periodic boundary conditions. This observation implies that it is not necessary to generate new gluon configurations for every choice of the twist angle, making the method much more practicable. For K ??? decays we show that the breaking of isospin symmetry by the twisted boundary conditions implies that the amplitudes cannot be determined in general (on this point we disagree with a recent claim)

Topics: QC
Year: 2005
OAI identifier: oai:eprints.soton.ac.uk:45389
Provided by: e-Prints Soton
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://dx.doi.org/10.1016/j.ph... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.