Dynamics of One-dimensional Bose Liquids: Andreev-like Reflection at Y-junctions and Absence of the Aharonov-Bohm Effect

Abstract

We study one dimensional Bose liquids of interacting ultracold atoms in the Y-shaped potential when each branch is filled with atoms. We find that the excitation packet incident on a single Y-junction should experience a negative density reflection analogous to the Andreev reflection at normal-superconductor interfaces, although the present system does not contain fermions. In a ring interferometer type configuration, we find that the transport is completely insensitive to the (effective) flux contained in the ring, in contrast to the Aharonov-Bohm effect of a single particle in the same geometry.Physic

Similar works

This paper was published in Harvard University - DASH.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.