Intrinsic multichannel power control in cascaded power-equalizing erbium-doped fiber amplifiers

Abstract

We numerically investigate the performance of a cascade of four-channel power-equalizing reflective erbium-doped fiber amplifiers (EDFAs). The EDFAs reflect different channels at different points so that different channels interact with partly different sections of the EDFA. Thus, the gain for different channels saturate partly independently. The channels can self-heal independently in the cascade, which therefore is less sensitive to harmful channel-dependent and channel-independent inter-amplifier loss variations than a cascade of normal nonequalizing EDFAs is. Moreover, the design channel-power is maintained even if channels are dropped. In contrast to a cascade of typical nonequalizing EDFAs, we can in addition control the channel power evolution via the pumping of the power-equalizing EDFAs

Similar works

Full text

thumbnail-image

Southampton (e-Prints Soton)

redirect
Last time updated on 02/07/2012

This paper was published in Southampton (e-Prints Soton).

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.